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Abstract

The characteristics of seasons with enhanced East Coast winter storm and storm

surge activity are identified from among a set of global atmospheric circulation indices

and local land and sea surface temperature anomalies.  Without regard for storm strength

or surge potential, the most active East Coast winter storm (ECWS) seasons occur in

association with El Niño events.  There is also some indication that such seasons are

preferred under the positive phase of the Pacific decadal oscillation.  In terms of storm

surge potential, forecasts of strong ECWS activity are more skillful than direct forecasts

of the number of extreme surge events.  In both cases, sea surface temperatures (SST) off

the southeast U.S. coast and in the Gulf of Mexico differentiate high seasonal activity

from relatively inactive seasons.  Warmer than normal SST in both regions during

summer provide a measure of storm activity in the subsequent winter.

The results provide a means of anticipating seasonal East Coast winter storm

activity, and to some degree impacts, that is similar to widely used forecasts of tropical

storm activity.  From a predictive standpoint, forecasts of active strong storm seasons and

low surge activity exhibit fairly high false alarm ratios.  However, the false alarm rate for

forecasts of low storm activity or high surge activity is less than 10%.
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1. Introduction

Coastal interests in the Northeastern United States are particularly vulnerable to

impacts related to East Coast winter storms (ECWS). In fact, it can be argued that the

adverse effects of these storms exceed those of hurricanes along the metropolitan

Northeast coastline, given their higher frequency of occurrence and more widespread

impacts.  A cursory examination of the publication Storm Data supports this claim.

During the late 1990s, ECWS resulted in 5 deaths and over 30 injuries in the New York

Metropolitan Area (defined as coastal New York and New Jersey).  Comparatively,

tropical weather systems resulted in only one death and four injuries.  In terms of

economic losses, ECWS were responsible for nearly 50 million dollars in damage,

compared to 2 million in tropical cyclone loses.  Leatherman (1982) cites coastal storms

(both extratropical and tropical) as a major contributor to beach and dune erosion,

overwash processes and the opening of tidal inlets on barrier islands.

Many of the coastal impacts of ECWS result from the larger spatial dimensions

and longer durations of these storms relative to hurricanes.  ECWS tend to persist over

numerous tidal cycles and thus their potential to produce coastal impacts from high

winds, waves and increased water levels extends over days rather than hours.  Likewise,

the winds from these storms are able to trap ebb tidal flow in areas away from the

immediate coast (e.g. within Long Island Sound) allowing water levels to build over

several tidal cycles.

Despite the severity of the economic, environmental and societal impacts

resulting from ECWS, little is known about their climatological variability or the

influence that other large scale events and components of the global atmosphere and
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oceans exert on their frequency and severity.  The climatology of ECWS has been

examined by Mather et al. (1964) based on documentary accounts; Davis et al. (1993)

using wave heights; and Hirsch et al. (2001) based on the NCEP/NCAR Reanalysis data

set (Kalnay et al., 1996).  Hirsch et al. (2001) found average monthly ECWS frequency

anomalies to be significantly higher during El Niño months when compared to neutral

months over the October-April storm season.  ECWS show little or no change in

frequency anomalies during La Niña months.

DeGaetano et al. (2002) and Chan et al. (2003) extended these results through

empirical analyses of the relationship between ECWS activity and various atmospheric

indices. DeGaetano et al. (2002) showed that sea surface temperatures in the Gulf of

Mexico during the previous storm season provided a measure of ECWS activity during

the subsequent December through February period.  Warmer than normal Gulf

temperatures were typically associated with active seasons.  It was shown that this

variable was related to both El Niño and North Atlantic Oscillation (NAO) phase, as

heightened storm activity tended to occur during the positive phase of the NAO and El

Niño conditions.  Over a longer October –April storm season, high activity tended to be

associated with warmer than normal sea surface temperature off the Southeast U.S. coast

during the preceding summer.

Chan et al. (2003) compared 500 hPa height anomalies between active and

inactive ECWS seasons.  An October dipole, with stronger than normal 500 hPa

geostrophic westerlies over the eastern Pacific, was associated with higher than average

storm activity from November through April.  Such seasons were also characterized by
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weaker than average 500 hPa geostrophic westerlies over the North Atlantic.  These

relationships tended to be modulated by the phase of the El Niño Southern Oscillation.

In the current work, these results are extended by focusing on a subset of storms

that are most likely to produce coastal flooding and erosion impacts on New York’s Long

Island.  This portion of the Northeast coast provides the focus of the study based on

stakeholder (emergency managers and coastal engineers) interest in anticipating seasonal

storm impacts; the extensive south-facing coastline of the Island, and the high potential

for economic and environmental impacts. In section 2 the use of tide gauge data to isolate

impact-producing ECWS events is discussed.   Likewise, an alternative definition of

seasonal ECWS activity based on tidal surge rather than meteorological parameters is

introduced.  In section three, a refined statistical methodology is described.  Results, both

in terms of diagnostic and predictive meteorological variables, are presented in section 4.

2. Data

2.1.  Seasonal storm counts

The methods of Hirsch et al. (2001) were used to identify ECWS.  By definition,

ECWS were required to be located within the quadrilateral bounded at 45° N latitude by

65° W and 70° W longitude  and at 30° N latitude by 75° W and 85° W longitude.  A

slight modification was incorporated into the original objective identification algorithm,

expanding the range of valid tracks to include storms with a motion from 270° to 90°.

Originally, some northward component of storm motion was required.  However, when

compared to surge records, it became apparent that several noteworthy storms were

excluded by this criterion.  Overall, the effect of this change was to increase the average
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number of storms per season by more than 30%.  However, the correlation between the

two series was high (r = 0.86).

Subsets of storms were defined based on the magnitude of storm surge observed

at tide gauges along and adjacent to the southern shore of New York’s Long Island.

Hourly values of observed and predicted tides were obtained from the NOAA Center for

Operational Oceanographic Products and Services (CO-OPS) website

http://tidesandcurrents.noaa.gov/.  Long-term data were available from four sites in the

New York City metropolitan region.  Data from Montauk (station 8510560), The Battery

(station 8518750) and Sandy Hook, NJ (station 8531680) were available from 1959-

2005.  Data at Willets Point (station 8516990) were discontinued in 1999.

All data were with respect to the mean lower-low water level and were adjusted

prior to 1983 to account for the epoch adjustment.  In practice, tides are referenced with

regard to a specific 19-year period or epoch, the most recent spanning the period 1983-

2001.  The recomputed epoch accounts for astronomical, anthropogenic and geological

variations in tidal levels through the period (Hess, 2003). Hourly surges were computed

as the difference between the observed and predicted (astronomical) tide values.  Extreme

surges were defined based on hourly values that exceeded the 99th and separately 99.9th

percentiles of all surge hours from October through April over the period of record.

Hourly surge extremes, separated by less than 72 hours, were considered a single

surge event.  During each October –April season, these events were tallied producing

series of surge counts for each tide station analogous to that for seasonal ECWS activity.

Combining the unique surge events from the four stations also formed a regional extreme

surge series.  Unique station events were also required to be separated by at least 72
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hours.  It was rare that a regional event was based on an extreme from a single gauge.  On

average, 8.3 regional 99th percentile extreme surge events occurred in a season.  While

impacts did not necessarily occur with each of these events, the series provided an

adequate number of events for subsequent analysis.  Using the 99.9th percentile extremes,

1.4 regional surge events occurred on average in a season.  This number is more in line

with the frequency of moderate to severe ECWS impacts reported by Mather et al.

(1964).

To relate the meteorological ECWS series to annual surge event counts, subsets of

strong storms were developed based on different wind speed thresholds as well as various

stronger pressure gradient criteria.  Although the more stringent criteria reduced the

number of storms classified as strong, the correlation among the series remained high, in

most cases exceeding 0.90.  Thus, the original (Hirsch et al. 2001) definition of strong

storms, those with a maximum wind speed > 23.2 ms-1, was retained for consistency.

Hereafter this series is referred to as strong ECWS.  When the strong storm series was

compared to the series of regional 99th percentile surge occurrences (Figure 1), the series

display modest correlation, with r = 0.56.  For more extreme surges (99.9th percentile)

only weak correlation is evident (r = 0.23).

Based on the 99th percentile, 13 of the 46 seasons (28%) experience 10 or more

surge events (Table I).  Given the season experiences 11 or more strong ECWS events,

however, the likelihood of experiencing 10 or more 99th percentile surges more than

doubles to 58% (Table I).  This number of strong ECWS is observed in only 25% of the

ECWS seasons.  For the more extreme 99.9th percentile surges, two events can be

expected in 32% of the years.  In a year with ≥11 strong ECWS, there is a slightly higher
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than 42% chance that the season will experience two or more extreme surges (Table I).

Collectively, Table I suggests that the ability to anticipate seasons in which ≥11 strong

ECWS occur, maximizes the likelihood of experiencing a greater than average number of

extreme surge events, regardless of whether surge events are defined by the 99th or 99.9th

percentile.

Since the ability to anticipate active surge seasons directly would provide a more

useful decision tool for emergency managers, the time series of regional 99th and 99.9th

storm surge counts were substituted for the strong ECWS series in later analyses.  A

second, similar data set was also constructed in which the 99th or 99.9th surge events were

required to occur in association with an ECWS.  Hereafter these series are denoted

ECWS-Surge.  Using the 99.9th percentile threshold less than 7% of the surge hours were

associated with meteorological events that were not classified as ECWS.  Using the 99th

percentile threshold, this figure increased to 24%.  These cases were typically associated

with storms that displayed westward movement as they traversed the coast or tracked

through the Great Lakes to the west of the ECWS polygon.  In many cases, a strong area

of high pressure offshore accompanied the Great Lakes lows.  This produced a strong

pressure gradient along the east coast.

Overall the direct use of the storm surge data would provide the best

characterization of seasons with high impact activity.  However, since extreme surges can

occur under a variety of meteorological conditions ranging from ECWS to strong high

pressure systems, the direct use of the extreme surge series may result in suboptimal

seasonal forecast skill.  Presumably, the ability to forecast seasonal activity relies upon

persistent atmospheric circulation features and hence a propensity for specific synoptic
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features such as ECWS.  In such cases the enhanced ability to predict these features,

which are most commonly associated with high surge events, may outweigh potentially

less skillful forecast of surge events.  Such forecasts are analogous to seasonal hurricane

forecasts.  These are currently followed closely by emergency managers in the study

region, despite a relatively small increase in observed impacts during active hurricane

seasons.  The use of the third hybrid time series, reflecting only those surge events that

occur in association with ECWS, as a basis for forecasting seasonal activity provides a

compromise between the two extremes represented by the other time series.

2.2. Predictor variables

A set of eight predictor variables (Table II) was assembled based on analyses

conducted by Hirsch et al. (2001).  The first four predictors in Table II are global indices.

Their inclusion accounts for the relationships between coastal storm frequency and SOI

and Niño 3.4 SST anomalies identified by both Hirsch et al. (2001) and Noel and

Changnon (1998); NAO-Atlantic storm track dependencies (e.g. Mailier et al., 2006); and

the PDO (McCabe and Dettinger, 2002).

The remaining variables characterize sea and land surface temperatures within or

adjacent to the ECWS quadrangle.  Colucci (1976) and the conclusions of other

researchers studying specific ECWS (e.g. Bosart 1981), point to land-sea temperature

contrasts as contributing to the development and intensification of ECWS. Hoskins and

Valdes (1990) also implicate such baroclinic regions as contributors to persistent Atlantic

storm tracks.

Standardized anomalies were computed for each of these four local parameters.

Gulf_SST encompassed the area from 29° N to 25°N and 83° W to 95°.  SE_SST was
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defined over the area south of 35° N contained in the ECWS study region defined by

Hirsch et al. (2001). SE_Land was computed based on area-weighted averages of U.S

climate division values (Guttman and Quayle 1996) from the states of Florida, Georgia,

South Carolina and North Carolina.  For each month the difference between SE_Land

and SE_SST was computed and standardized anomalies (Land-sea) computed from the

set of differences.

3. Methods

3.1. Principal component analysis

To isolate the appropriate temporal averaging periods, DeGaetano et al., (2002)

chose to prescreen a similar set of predictor variables, based on a suite of chi-squared

tests.  This approach compromised subsequent evaluation of the significance of the

ECWS frequency predictions since the chi-squared procedure was not easily incorporated

into the resampling procedures used for this purpose.  As an alternative, a principal

components analysis is used here to reduce the size of the original predictor pool.  For

each of the eight predictor variables, 3-month running averages were computed over the

period from the October prior to the start of the ECWS season through April of the storm

season.  Hence, a set of 17 three-month averages was available for each of the 8

predictors.  Of the 17 combined averages, 10 were purely predictive as none of the data

was contained within the October to April storm period.  Conversely, 7 averages were

termed diagnostic in that they encompassed at least one month of the storm season.

Separate PCA were conducted on these three data sets.  Presentation of the resulting

principal components equations is cumbersome given the large number of variables (e.g.
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8 predictors x 7 averages for the smallest diagnostic data set).  However the components

can be reproduced based on the data sources from Table II and analysis with the software

package R using the prcomp procedure (www.r-project.org).

Subjective principal component truncation criteria were used to select subsets of

retained components.  Although more rigorous component retention methods exist

(Wilks, 2006), the resampling procedures used in the subsequent discriminant analyses

assured that components representing only noise were not considered in formulating

forecasts of seasonal storm activity.  The retained components represent points on Figure

2 in which the eigenvalues associated with higher-order components stabilize. For

reproducibility Table III summarizes the retained component subsets.    Figure 3

summarizes these components in terms of the variables with the highest loadings.

3.2. Discriminant analysis

The retained component scores served as input to discriminant analyses.  In the

simplest case, storm and extreme surge counts were divided into two groups, segregating

seasons with relatively high and low activity based on the quartiles or median of the

1959-2005 storm activity record.  Storms were also segregated into three groups based on

the terciles of the historical record.  Table IV lists the boundaries of these groups for each

of the four storm/surge definitions discussed in the previous subsection, the December –

February storm counts (DJF ECWS) analyzed by DeGaetano et al. (2002), and counts of

all ECWS meeting the criteria of Hirsch et al. (2001) including those which were present

for only a single 6-hour period (All ECWS).

For these analyses, classification success was defined by the Kuiper skill score

(KSS).  This measure is given by the equation
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KSS =

ad − bc
(a + c)(b + d)   , (1)

where a is the number of events that occurred when forecasted, b is the number of times

an event did not occur when forecasted, c is the number of events that occurred when not

forecasted and d is the number of instances that an event was neither forecasted nor

observed.

The KSS (Wilks, 2006) is a desirable measure of forecast skill since it treats

random and constant (e.g. always forecasting below normal activity) forecasts equally,

assigning them a score of zero.  A perfect forecast is given a score of one.  The KSS also

assigns higher skill to a correct forecast when the alternative forecast is more likely.

A resampling procedure was used to determine the maximum number of

dimensions to consider.   Based on the original seasonal storm (surge) count time series,

10,000 bootstrap samples were generated (Wilks, 2006).  For each randomized series, the

combination of components yielding the maximum KSS was retained for each

bootstrapped series.  This resulted in an empirical distribution of KSS against which the

original (non-bootstrapped) score could be compared.  Discriminant functions were

considered if the KSS exceeded the 90th percentile of the bootstrapped distribution.

Bootstrapping in this manner is a feasible approach given the storm count series lack

significant autocorrelation.

These analyses were conducted separately constraining the discriminant analysis

to a fixed number of components.  The one-dimensional case represents a point dividing

the component time series into two storm-activity regions.  More conventional 2- and 3-

dimensional discriminant functions were also tested.  The significance of the increase in
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KSS resulting from the added dimensions was also assessed via resampling.

Bootstrapped samples of KSS increase were generated by retaining the order of the

original storm activity and lower dimension component series.  The component series

associated with the added dimension was randomized (10000 times) and the resulting

KSS increase used to form a test distribution.

The classification success of the discriminant functions that displayed significant

skill was re-evaluated based on leave-one-out cross-validation.  The robustness of the

discriminant functions was also evaluated by withholding non-overlapping sets of five

years from the storm series, recomputing the functions based on the remaining n -5 year

series, and assessing the success of these new functions in terms of their ability to classify

the activity of the withheld years.

4.  Results

 4.1  Diagnostic components

Based on the set of diagnostic components (limited to the October through April

ECWS season) seasons with ECWS activity within the upper quartile can be

differentiated from lower activity seasons with significant skill (Figure 4).  This was not

the case for divisions based on the lower quartile or median, a result that was also

reflected in the other storm and surge series (e.g. strong storms).  Hence, hereafter the

upper quartile will be used as the threshold dividing active from relatively inactive storm

seasons.

Active All-ECWS seasons are typically associated with negative component 1

values and positive component 2 values (Figure 5a).  Based on the component loadings
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(Figure 3), this implies heightened ECWS activity occurs during seasons characterized by

El Niño conditions and below-normal SST anomalies in the Gulf and along the Southeast

coast.  Although the skill of the three-dimensional discriminant analysis is also

significant, consideration of a third component (component 4 in this case) only reassigns

two seasons misclassified as active (circled symbols in Figure 5a).  Component 4 reflects

winter PDO conditions.

The components reflecting El Niño and PDO combine to produce statistically

significant three-category classification success for All-ECWS activity.  Like Figure 5a,

the main difference between active and non-active seasons in Figure 5b, is the value of

component 1, with active seasons characterized by generally negative values (i.e. El

Niño).  Component 4 (PDO) values tend to differentiate between seasons with normal

and below-normal activity, with inactive seasons characterized by negative PDO index

values.

The El Niño based component is no longer included when the strong ECWS data

set is considered (Figure 5c).  Rather, seasons with strong ECWS activity exceeding the

75th percentile are characterized by below-normal winter SST anomalies in the Gulf and

along the Southeast coast (positive component 2 values) and generally negative values of

component 5.  Based on the component loadings (Figure 3), this component implies that

warmer SST in February, coupled with a low late autumn (October-November) land sea

temperature contrast is conducive to strong storm activity.

In each of the panels in Figure 5, the 1982 ECWS season appears as an outlier.

This season is associated with anomalously negative component 1 and component 2

scores.  In addition to the occurrence of a strong El Niño event, this season was also
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preceded by the eruption of El Chichon in Mexico.  It is possible the juxtaposition of

these two climate anomalies influenced ECWS activity during this season.  Elimination

of this season had little effect on the results in Figure 5.

Based on the other definitions of storm activity, significant skill scores are not

achieved for DJF ECWS or 99th percentile surge occurrences (Figure 4).  Nonetheless, the

highest skill for DJF ECWS is achieved using components 1 and 2.   As was the case

with the all ECWS series, high activity was generally observed in association with El

Niño and below normal winter SST anomalies.  This also agrees with DeGaetano et al.

(2002) who found El Niño and Gulf and Southeast coastal SST as the best discriminant

variables.  For surge occurrence, component 2 is also included as a discriminant variable

along with component 4 representing PDO conditions.  The significant skill scores for the

ECWS-surge series are based on the same components as the strong ECWS series.

4.2. Combined diagnostic components

4.2.1 All-ECWS activity

Based on the combined diagnostic components that span the period from the

previous October through April of the ECWS season, similar results are obtained.  For

All-ECWS activity, the skills of the discriminant analyses decline and as a result are no

longer significant (Figure 6).  Nonetheless, the variables which give the highest skill

reflect those which gave significant classification success in the within season analysis.

Seasons with the highest activity are characterized by positive component 1 and 5 values

which represent positive PDO values (and to some degree El Niño conditions) during and

prior to the storm season as well as cooler than normal Gulf and land temperatures during
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the winter season.  These results are in agreement with the diagnostic analysis, as these

two components are the most highly correlated to the two components (1 and 2) that

resulted in the best diagnostic skill (r= -0.85 and 0.74, respectively).

4.2.2. Strong ECWS activity

Unlike the ECWS activity in general, significant skill is obtained for the

discrimination of seasons with high strong ECWS activity (Figure 6).  Seasons with high

storm activity tend to have negative values of both components 6 and 7 (Figure 7a).

Here, active storm seasons are associated with warmer than normal SST in the Gulf

during summer and but cooler land and sea surface temperature over the Southeast,

during the spring prior to the ECWS season (Figure 3).  Quantitatively, components 6 and

7 are most highly correlated with the two diagnostic components (components 2 and 5)

that maximized strong ECWS classification skill (r= -0.36 and 0.41, respectively).

The anomalous 1982 season is the only high-activity season that is misclassified

in Figure 7a.  Excluding this year generally improves classification success, increasing

the KSS from 56.5 to 68.9.  However, the change in the discriminant function is minimal.

In addition to the omission of the misclassified active season, two seasons with relatively

low activity are reclassified to the correct group.

4.2.3.  Surge activity

It is interesting to note that seasons with relatively few extreme surges (those in

the lower 25th percentile) can be distinguished from seasons with higher activity based on

similar components (Figure 7b) that allow classification of the strong ECWS seasons

(Figure 7a).  The seasons with the lowest number of 99th percentile surge events are

characterized by positive component three values (Figure 7b).  This represents cooler
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than normal SE_SST during the summer and fall preceding the ECWS season, in general

agreement with the storm results that, based on component 6, indicate higher activity

(and presumably more extreme surges) with warmer summer SST.  The circled points in

Figure 7b are reclassified when the third component (component 6) is considered.

4.3. Predictive components

4.3.1.  All-ECWS activity

Based on predictive principal components (i.e. those based only on variables

observed prior to the October – April ECWS season) the classification of All ECWS

activity was similar to that based on variables observed during the ECWS season.

Although the skill scores obtained for the predictive components were not significant

based on the resampling procedures (Figure 8), the highest predictive classification

success was achieved using components related to those that gave significant diagnostic

classification success.  High ECWS activity was associated with negative component 3

and positive component 5 values, indicating high storm activity following El Niño

(positive PDO) summers.

4.3.1. Strong ECWS activity

Predictive components 4 and 6 resulted in the best classification of strong storm

activity. (Figure 9a), The correlation between these two components and components 6

and 7 that were associated with significant classification success in the combined

component analysis exceeded 0.85 Seasons with the highest activity are associated with

generally negative component 4 and 6 values.  This implies warm Gulf_SST anomalies

during the preceding summer and cooler than normal temperatures in the Gulf and SE

Coast during the previous late-winter and spring.  The addition of a third variable (in this
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case component 5) resulted in only a modest increase in classification skill (KSS = 47.8).

Component 5 represents El Niño conditions during the summer months.  Although the

classification of seven seasons changes when this third component is considered, in three

cases correctly classified seasons become misclassified (Figure 9a).

The anomalous 1982 season is also problematic in Figure 9a.  Omitting this

season results in a small increase in KSS (from 43.5 to 46.7) and only a subtle change in

the discriminant function.  The increase in KSS results solely from the omission of 1982.

Omitting 1982 had little effect on the classifications based on storm surge.

4.3.3. Storm surge activity

The predictive components also provided a means of classifying seasons with low

99th percentile surge activity (Figure 9b) using components 2 and 4.  These components

are most highly correlated with combined components 3 and 6, (r = 0.60 and 0.87,

respectively) two of the three components that gave significant classification skill.

Seasons with low surge activity were typically characterized by positive component 2

values, representing colder than average SST in the Gulf and SE Coastal regions during

the prior winter.

4.4.  Predictive cross validation

Figure 10 illustrates the ability of the predictive components to classify seasonal

storm and surge activity using independent data.  These results are based on the cross

validation analyses with non-overlapping five year periods omitted. Similar results are

obtained for leave-one-out cross validation.  For the independent strong storm counts and

surge occurrences, KSS decreases only slightly from 43.4 using the dependent sample to

42.2 in both cases.  For storm activity, 10 of the 12 (83%) seasons with activity in the
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upper quartile are assigned to the correct category (Figure 10a).  Of the remaining 34

seasons, 65% are correctly classified (Figure 10a).  From a practical standpoint, given a

forecast of strong storm activity in the lower three-quartile category, in only 8% of the

cases was higher ECWS activity observed.  Conversely, a forecast of strong ECWS

activity in the upper quartile results in a high number of false alarms, as the subsequent

number of ECWS will fall within this range only 45% of the time.  This is not surprising

given the distribution of points in the high activity sector of Figure 9a.  Nonetheless, the

probability of high ECWS given such a forecast is much higher than expected with no a

priori knowledge.

For storm surge activity (Figure 10b), 9 of the 12 seasons (75%) with surge

activity in the lower quartile are assigned to the correct category. Of the remaining 34

seasons, 71% are correctly classified (Figure 10b).  Given a forecast of surge activity in

the upper-three-quartile category, in only 11% of the cases was lower surge activity

observed.  If a forecast of surge activity within the lower quartile is indicated, activity in

this range is realized in only 47% of the cases.  Like forecasts of high ECWS activity,

despite the high number of false alarms, such forecasts do imply a higher than expected

probability (i.e. 25%) that a particular season will have relatively few extreme surge

events.   It should also be noted that since 1981, the false alarm rate for low surge activity

forecasts decreases to 25%.  It is unclear whether this is a natural artifact of the surge

series, or if non-climatological influences bias the pre-1981 data record.  Three of the

four tide gauges were relocated in 1989.  Although the data were adjusted for the 1983

change in epoch, it is unclear whether this adjustment also factored in the relocation of

the gauge.  The simultaneous relocation of the gauges and low correlation between surge
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series from other nearby gauges precluded a more formal analysis of the homogeneity of

the surge series.

In terms of the diagnostic component data sets cross validated skill is comparable,

despite reliance on observations from within the ECWS season.  Using the combined

components for strong ECWS, all but one of the seasons (1982) in which activity in the

lower 3 quartiles is forecasted experiences activity within the upper quartile (Figure 10a).

For storm surge, the cross validated skill based on the combined components also

remains high.  The combined components tend to improve classification success in the

earlier part of the record, but at the expense of correct classification in the post 1981

period (Figure 10b).

5. Summary

Collectively, the results presented here, although similar to DeGaetano et al.

(2002) are more robust.  The use of principal component analysis to reduce the initial

intercorrelated pool of discriminant variables and refined statistical analyses highlight

two features that were obscured by the various, mostly non-significant, relationships

presented in the original work.  From a meteorological perspective, it is primarily El Niño

phase, with some influence from PDO phase, that characterizes active ECWS seasons.

Cooler-than-normal Gulf_SST and SE_SST during the storm seasons also correspond to

heightened activity.  DeGaetano et al. (2001) show positive correlation (r = 0.45)

between these temperatures and NAO phase.

El Niño, however, has little relationship to the prevalence of stronger storms and

the potential for storm impacts along New York’s Long Island.  Here, SST, both in the
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Gulf and off the Southeast coast, exert the greatest influence.  An increased frequency of

strong storms can be anticipated when warmer-than-normal SST characterize these

regions during the summer months preceding the ECWS season.

In terms of extreme surge activity, significant KSS could not be obtained.

However, the relationships associated with the highest KSS reinforced the significant

results noted for strong storm activity.  Most notably, decreased surge activity tends to

follow summers in which Gulf_SST and SE_SST are below normal.  From a practical

standpoint, it is unfortunate that seasons in which the most extreme 99.9th percentile surge

events occur cannot be forecast with significant skill, as such information would be the

most beneficial to coastal interests.

Although the strong storm and surge series are related, a notable difference is that

the storms represent coast-wide conditions as they can be located within the relatively

large polygon defined by Hirsch et al. (2001) that extends from 45° to 30° latitude along

the East Coast.  The extreme surges, however, are affected by storms that traverse only a

limited part of this region.  This limitation, acts to diminish the seasonal predictability as

synoptic and smaller scale factors, specific to individual storm events, govern the

presence and magnitude of storm surge.  Thus, while the ability to anticipate regional

seasonal storm activity based larger scale conditions exists, the factors that govern the

nuances of individual storms at specific locations are less predictable on a seasonal basis.

Nonetheless, much like seasonal hurricane forecasts, which offer limited insight

into the associated impacts along a specific stretch of coast, these seasonal ECWS

relationships have practical seasonal forecast applications for coastal interests in the

metropolitan Northeast.  Given SST data observed prior to the start of the October storm



22

season, subsequent storm activity and to some degree tidal impacts can be anticipated.

Given that above-normal summer SST conditions are preceded by cooler-than-normal

land and sea surface temperatures in (and adjacent to) the Southeastern U.S. there is an

only 10% chance that an active strong ECWS season will follow.  In terms of storm surge

activity, warmer-than-normal SST in the Gulf and off the Southeast Coast during the

previous winter indicate that an active surge season is unlikely to follow.  Such

relationships provide useful information to emergency managers and coastal engineers in

terms of decisions related to budget and project management and public preparedness.

Although forecasts for above normal storm activity (below normal surge activity) are

associated with high false alarm rates, in a probabilistic sense these forecasts also provide

some useful guidance.  Using storm activity as an example, in any given year there is a

25% chance of experiencing activity in the upper quartile.  Given a forecast of above

normal activity, this probability nearly doubles to 45%.
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Table Legends

Table I.  Percentage of seasons with greater than or equal to the number of surge events.

The percentage of high surge events occurring during seasons with the specified numbers

of ECWS events is also given.

Table II.  Variables used to predict seasonal ECWS frequencies.

Table III.  Number of retained components and cumulative explained variance for

principal component subsets.

Table IV.  Thresholds used to define seasons with relatively high and low storm activity.
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Table I.  Percentage of seasons with greater than or equal to the number of surge events.
The percentage of high surge events occurring during seasons with the specified
numbers of ECWS events is also given.

Number of Percent of Percent of Surge Events Occurring in Seasons with
Surge Events all Seasons ≥12 ECWS ≥11 ECWS ≥10 ECWS ≥9 ECWS

14 2 13 8 5 4
13 9 13 17 20 16
12 11 25 25 25 20
11 17 25 33 30 24
10 28 25 58 45 40

9 28 25 58 45 40
8 40 38 75 65 56

3* 13 13 17 10 16
2* 32 25 42 40 44
1* 66 25 67 75 72

* surge events based on the 99.9th percentile.
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Table II.  Variables used to predict seasonal ECWS frequencies.

Variable Abbreviation Data Source
Niño 3.4 SST Anomaly Niño 3.4 <http://www.cpc.ncep.noaa.gov/data/indices/sstoi.indices>
Southern Oscillation Index SOI < http://www.cpc.ncep.noaa.gov/data/indices/soi >
North Atlantic Oscillation Index NAO < http://www.tiempocyberclimate.org/portal/datanao.htm >
Pacific Decadal Oscillation Index PDO < http://jisao.washington.edu/pdo/PDO.latest >
Gulf of Mexico SST anomaly GULF_SST NCAR/NCEP Reanalysis Data Set
Southeast Coastal SST Anomaly SE_SST NCAR/NCEP Reanalysis Data Set
Southeast Land Temp. Anomaly SE_Land U.S. Climate Division Data
SE Land – SE SST Anomaly Land-sea Reanalysis and Climate Division Data



29

Table III.  Number of retained components and cumulative explained variance for

principal component subsets.

Number of Cumulative

Retained Explained

Component Set Months Components Variance (%)

Predictive Oct–1 – Sep 7 82

Diagnostic Oct. – Apr 5 89

Combined Oct–1 – Apr 7 77

* -1 denotes the year prior to ECWS season commencement.
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Table IV.  Thresholds used to define seasons with relatively high and low storm activity.

Percentile Threshold*

Storm Set 25 50 75 terciles

All ECWS 21 23 26 22  24

Strong ECWS 6 9 11  7   9

DJF ECWS 5 8 10  7     8

Regional 99th Surge 4 6 10  4     7

Regional 99.9th Surge 0 1 2  1     1

ECWS-99th Surge 2 4 6  3     5

* Using the 25th percentile, seasons with the number of listed storms or fewer define

inactive seasons.  For the 50th and 75th percentiles active seasons have the listed number

or more storms.  Using the tercile thresholds, inactive (active) seasons have fewer (more)

storms than the first (last) listed value.
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Figure Captions

Figure 1.  Annual number of strong ECWS (solid line with closed circles), 99th percentile

(dotted line with closed circles) and 99.9th percentile (solid line with open circles)

regional surge events.

Figure 2.  Eigenvalue magnitudes as a function of principal component number for the

predictive (solid squares); diagnostic (solid circles) and combined (open circles) sets of

principal components.

Figure 3.  Variables with the five highest loadings in the diagnostic (top grid, right of

thick line), predictive (top grid, left of thick line) and combined (bottom grid) principal

component subsets.  Rows represent variables (Table II) and columns the starting month

used to compute three-month averages of the corresponding variable.  Months are

denoted numerically with a minus sign used in the year prior to the storm season and a

plus sign used for months in the subsequent year. The number within each grid is the

component number with negative signs used to denote the sign of the loading.
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Figure 4.  Skill score associated with 1, 2, and 3 variable (diagnostic component)

discriminant analyses (from left to right respectively in each grouping of bars) for

different definitions of seasonal storm activity.  The number in each bar represents the

probability of achieving the plotted skill score by chance.  Bars showing significant skill (

p > 0.10) are shaded.

 Figure 5.  Linear discriminant analysis results for a) upper quartile grouping of the All-

ECWS data set, b) tercile grouping of the All-ECWS data set and c) upper quartile

grouping of the strong ECWS data set based on diagnostic principal components.

Seasons with the highest activity are denoted as solid circles.  The gray squares show

seasons with the lowest activity in panel b.  Circled symbols represent cases that are

reclassified when an additional variable is considered.

Figure 6.  As in Figure 4, but based on the combined diagnostic set of component scores.

Figure 7.  As in Figure 5c except for the combined diagnostic set of components for a)

strong ECWS and b) 99th percentile surge events.  In panel b open squares denote seasons

with surge occurrence in the lower quartile.

Figure 8.  Skill score associated with 1, 2, and 3 variable (predictive component)

discriminant analyses (from left to right respectively in each grouping of bars) for

different definitions of seasonal storm activity.
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Figure 9.  As in Figure 7 except for the predictive set of components.

Figure 10.  Cross validation results omitting non-overlapping 5-year periods.  Dots

indicate observed a) strong ECWS and b) 99th percentile surge events.  Gray bars show

the category indicated by the predictive component discriminant functions.  White bars

show cross validation results using the combined component discriminant functions.
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Figure 1.  Annual number of strong ECWS (solid line with closed circles), 99th percentile

(dotted line with closed circles) and 99.9th percentile (solid line with open circles)

regional surge events.
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    Figure 2.  Eigenvalue magnitudes as a function of principal component number for the

predictive (solid squares); diagnostic (solid circles) and combined (open

circles) sets of principal components.
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Figure 3.  Variables with the five highest loadings in the diagnostic (top grid, right of

thick line), predictive (top grid, left of thick line) and combined (bottom grid) principal

component subsets.  Rows represent variables (Table II) and columns the starting month

used to compute three-month averages of the corresponding variable.  Months are

denoted numerically with a minus sign used in the year prior to the storm season and a

plus sign used for months in the subsequent year. The number within each grid is the

component number with negative signs used to denote the sign of the loading.
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Figure 4.  Skill score associated with 1, 2, and 3 variable (diagnostic component)

discriminant analyses (from left to right respectively in each grouping of bars) for

different definitions of seasonal storm activity.  The number in each bar represents the

probability of achieving the plotted skill score by chance.  Bars showing significant skill

(p > 0.10) are shaded.
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Figure 5.  Linear discriminant analysis results for a) upper quartile grouping of the All-

ECWS data set, b) tercile grouping of the All-ECWS data set and c) upper quartile

grouping of the strong ECWS data set based on diagnostic principal components.

Seasons with the highest activity are denoted as solid circles.  The gray squares show

seasons with the lowest activity in panel b. Circled symbols represent cases that are

reclassified when an additional variable is considered.
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Figure 6.  As in Figure 4, but based on the combined diagnostic set of component scores.
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Figure 7.  As in Figure 5c except for the combined diagnostic set of components for a)

strong ECWS and b) 99th percentile surge events.  In panel b open squares denote seasons

with surge occurrence in the lower quartile.
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Figure 8.  Skill score associated with 1, 2, and 3 variable (predictive component)

discriminate analyses (from left to right respectively in each grouping of bars) for

different definitions of seasonal storm activity.
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Figure 9 As in Figure 7 except for the predictive set of components.
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Figure 10.  Cross validation results omitting non-overlapping 5-year periods.  Dots

indicate observed a) strong ECWS and b) 99th percentile surge events.  Gray bars show

the category indicated by the predictive component discriminant functions.  White bars

show cross validation results using the combined component discriminant functions.


